Welcome to IconicQuote. Search your name by Alphabet. Open your page via Url. Read your favorite writer's Quote.

Search your name

Articles -- Piyush Goel


⋇⋆✦⋆⋇ "Piyush Theorem" ⋇⋆✦⋆⋇ 

 Piyush Theorem

PiyushTheorem: In a Right-Angled Triangle with sides in A.P. Series, the distance between the point of intersection of median & altitude at the base is 1/10 Th the sum of other two sides.
This Theorem applies in Two Conditions:
The Triangle must be Right-Angled.
Its Sides are in A.P. Series.
1.Proof with Trigonometry

Tan α =AD/DC
AD= DC Tan α —————–1
Tan α = AD/DE
AD= DE Tan2 α —————-2
DC Tan α = DE Tan 2 α
(DE+EC) Tan α = DE Tan 2 α
DE Tan α + EC Tan α = DE Tan 2 α
DE Tan α + EC Tan α = 2 DE Tan α / (1- Tan2 α )
DE Tan α – DE Tan3 α + EC Tan α –EC Tan3 α = 2DE Tan α
EC Tan α –EC Tan3 α – DE Tan3 α = 2DE Tan α – DE Tan α
Tan α (EC – EC Tan2 α – DE T an2 α )= DE Tan α
DE Tan2 α – DE = EC Tan2 α – EC
-DE ( Tan2 α + 1) = -EC (1 – Tan2 α )
DE (sin2 α /cos2 α + 1) = EC (1- sin2 α /cos2 α )
DE (sin2 α + cos2 α /cos2 α ) = EC (cos2 α – sin2 α /cos2 α )
DE (sin2 α + cos2 α ) = EC(cos2 α –sin2 α )
DE (sin2 α + cos2 α ) = EC (cos2 α –sin2 α ) where (sin2 α + cos2 α =1) & (cos2 α –sin2 α = cos2 α ) DE= EC cos2 α  
cos α =a/a+d & sin α = (a-d)/ (a +d)
cos2 α = a2/ (a +b) 2
sin2 α = (a-d) 2/ (a+ d) 2
DE= EC (cos2 α – sin2 α )
= EC (a2 / (a +b) 2 – (a-d) 2/ (a +d) 2
= EC (a2 – (a-d) 2/ (a +d) 2
= EC (a –a +d) (a+ a-d)/ (a+ d) 2
= EC (d) (2a -d)/ (a+ d) 2
= (a +d)/2(d) (2a -d)/ (a +d) 2 ————- where EC= (a +d)/2
= (d) (2a -d)/2(a +d)
= (d) (8d -d)/2(4d+d) ——————where a= 4d (as per the Theorem)
= 7d2 /2(5d)
= 7d /10
= (3d+4d)/10= (AB+AC)/10
2.Proof with Obtuse Triangle Theorem

AC2=EC2 +AE2 +2CE.DE where EC = ( a +d) /2,AE=( a +d)/2
a2 = (a +d/2)2 + (a+ d/2)2 + 2(a +d)/2DE
= (a +d/2) (a+d+2DE)
= (a +d/2) (a+d+2DE) where a=4d
16d2 = (5d/2) (5d+2DE)
32d/5 = 5d + 2DE
32d/5 – 5d = 2DE
32d -25d/5 = 2DE
DE =7d/10
= (3d+4d)/10 = (AB+AC)/10
3.Proof with Acute Triangle Theorem

AB2= AC2+BC2 – 2BC.DC
(a-d) 2= a2 + (a+ d) 2 -2(a+ d) (DE+EC) where AB= (a-d), AC=a, BC =( a +d) & EC= (a +d)/2
(a-d) 2 – (a +d)2 = a2 -2(a +d)(DE+EC)
(a- d –a-d) (a -d +a +d) = a2 -2(a+ d) (2DE+a+d)/2
2(-2d) (2a) = 2a2 -2(a +d) (2DE+a+d)
-8ad – 2a2 = -2(a +d) (2DE+a+d)
-2a (4d +a) = -2(a +d) (2DE+a+d)
a (4d + a) = (a +d)(2DE+a+d)
4d (4 d + 4d) = (4d+d) (2DE+4d+d)
4d (8d) = (5d) (2DE+5d)
32d2/5d = (2DE+5d)
32d/5 = (2DE+5d)
32d/5 – 5d = 2DE
(32d – 25d)/5 = 2 DE
DE = 7d/10
= (3d+4d)/10 = (AB+AC)/10
4. Proof with Co-ordinates Geometry

Equation of BE
Y – 0 =b-0/0-a(X – a)
Y = -b/a(X) + b——————- (1)
M1 = -b/a
For perpendicular
M1M2= -1
So M2=a/b
Equation of AC
Y – 0 = a/b(X-0)
Y=a/b(X) —————— (2)
Put Y value in equation (1)
a/b(X) + b/a(X) =b
X (a2+b2/a b) = b
X = ab2/ (a2 + b2)
To get Value of Y, put X value in equation (2)
Y = a/b (ab2/ (a2+b2)
Y = a2b/ (a2+b2)
Here we got co-ordinates of Point C – ab2/ (a2 + b2), a2b/ (a2+b2) and co-ordinates of point d is (a/2, b/2) because d is midpoint.
As per the “Theorem” a=z-d, b=z, c = z+ d
(z +d) 2= (z-d) 2+z2 from here z=4d so a=3d and b=4d
Put value of a & b
ab2/ (a2 + b2), a2b/ (a2+b2) & (a/2, b/2)
ab2/ (a2 + b2) = 48d/25
a2b/ (a2+b2) = 36d/25
a/ 2=3d/2
b/ 2 =4d/2
CD2= (48d/25 -3d/2)2-(36d/25-4d/2)2
= (96d-75d/50)2 + (72d-100d/50)2
= (21d/50)2 + (-28d/50)2
= (441d2/2500) + (784d2/2500)
= (1225d2/2500)
CD= 35d/50 = 7d/10
= 7d/10 = (3d+4d)/10 = (AB+AE)/10

www.piyushgoel.in   
********


©Piyush Goel

****************

Please read my quotes by....

Searching my name in search bar or
Searching in Alphabet seaction "P"
Clicking on the tag of my name

You can bookmark this page in your browser to open my page directly.

Please share my quote to your friends by...
Clicking on the Share buttons given below.

Please give your feedback in Comment section.

Thanks.... 😊😊


**Tell about IconicQuote or
**Share the link  with your friends to join IconicQuote

*************

Welcome Dear Writer

 Piyush Goel

Thanks. for posting your first quote in IconicQuote. I wish you will post here regularly. Your all post will be shown in one page ...


You can share your link & quotes with your friends. 

You can also post poetry & stories too...


Thanks

(IconicQuote)


Post a Comment

0 Comments

Thanks for visiting to IconicQuote.Search your name by Alphabet.Open your page via Url.Read your favorite writer's Quote.